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its non-numerical exact bound states 

Miloslav Znojilt 
Department of Theoretical Nuclear Physics, Institute of Nuclear Physics ASCR. 250 68 kef, 
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Abstract The solvable Morse model with its asymmetric phenomenological potential V ( r )  = 
A l l  - exp[-p(r - re)])2 is generalized: via a computer-assisted algebraic construction. we 
show that for certain thw-component phenomenological potentials 

V ( r )  = A l l  - exp[-p(r - re ) ] )*  t B(1 - exp[-rr(r - r.8)1l3 t Cl1 - exp[-N(r - 
the closed and exact bound states may exist not only in singlets, but also in doublets and triplets. 

1. Introduction and summary 

The one-dimensional Schrodinger equation 

[-$ + V W ]  W) = E W )  r E ( - w o o )  (1) 

with the so-called Morse potential 

V ( r )  = A ( l  - exp[-@(r - rZ)]}* A 0 p > 0 (2) 

is well known and exactly solvable in terms of hgueme polynomials. The specific shape 
of potential (2) also explains its immediate phenomenological appeal in molecular physics 
and quantum chemistry [I]. 

In the latter setting, a 'more realistic' re-interpretation of our equation (1) is usually 
prefemed, ,with a three-dimensional s-wave choice of the range of coordinates r E ( 0 , ~ ) .  
During this transition to an unsolvable equation, the related errors are usually made 
negligible by an ad hoc assumption of a very large value for the parameter r. >> 1 [2]. 

In contemporary molecular phenomenology, the solvable (or, in three dimensions, 
'almost solvable') Morse model represents a highly schematic zero-order approximation 
(say, to the-often ab initio--calculated energy surfaces [3]). Hence, naturally, one may 
try to introduce corrections and contemplate the next three-term interaction 

v(r) = A (1 - e -w~r -d )2  + B (1 - e -~ ( r - r~ ) )3  + c (1 -e-*(r-+) )* (3) 

with C > 0 for, say, a more reliable prediction of a vibrational molecular spectrum [4]. 
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Methodically, the simplicity and seemingly ‘next-to-solvable’ character makes our 
generalized potential (3) even more challenging. One might study its relationship to the very 
similar Morse-like interaction terms which emerge in the so-called Toda systems on a lattice 
[5]. In particular, our Schriidinger-like equation may appear during the stability analysis 
of their solitons [6] or, in a way proposed by one of the referees, one might immediately 
identify equations (1) and (3) with some linear differential equations which emerge in the 
related inverse-scattering formalism [7, p 6291. 

In accordance with Turbiner [SI, another independent motivation for our study stems 
from the possible existence of certain underlying ‘quasidynamical‘ Lie algebras. Whenever 
they exist, these algebras (plus the standard theory of their representations) offer a simple 
explanation for the existence of a broad class of partially solvable (the so-called quasi- 
exactly solvable (QES)) systems (cf, e.g., our recent review [9] for more details). 

In what follows, we shall see that equations ( I )  and (3) may easily be identified with 
one of the known QES systems. Unfortunately, its Lie-algebraic treatment will be shown 
to offer just a single isolated QES eigenvalue. From the point of view of several important 
applications (the Hill-determinant [IO] and perturbative [ l l ]  methods, to name just two), 
this is not sufficient. In the present paper, we intend to show that in our Schrodinger bound- 
state problem (I), the exact one-dimensional solvability of the Morse model may still be 
preserved for forces of the more flexible form (3) and, let us re-emphasize, at several 
different energy levels. 

A priori, the possible existence of multiple QES solutions was not clear. Empirically, 
we have even succeeded in showing that. as a rule, the simplest possibilities regularly fail 
to reveal any multiplets at all. During ow research, such a phenomenon proved extremely 
discouraging. Only the strong (mostly phenomenological and quantum-chemical [Z, 71) 
practical relevance of the generalized Morse potentials, as well as the theoretical importance 
and possible algebraic background of the existence of multiplets [9], kept us moving towards 
the more complicated situations and, finally, to affirmative answers. 

Our presentation of results will start by a concise introduction to the general QES problem 
(section 2). We shall study in detail the suitable choice of variables (subsection 21) and 
the structure of the underlying (namely, coupled and nonlinear) ‘simultaneous solvability’ 
algebraic equations (subsection 2.2). Next, we shall find and describe some of their explicit 
solutions which form the elementary bound-state doublets (section 3). For clarity, we shall 
distinguish between the trivial (subsection 3.1) and next-to-trivial (subsection 3.2) cases. 
Similarly, in section 4, we shall demonstrate the existence of triplets. 

The contemporary progress in symbolic manipulations on computers [I21 was of 
significant importance and crucial help. With their assistance, the search for solutions finally 
proved successful, in spite of the unpleasant fact of life that there are no obvious theorems 
which would guarantee the simultaneous existence of several bound states ‘globally’, in a 
way parallelling some other QES examples [13,14]. 

Our first 
seven triplet solutions (namely, the four roots in subsection 4.1 and the three results 
of subsection 4.2) involve the ‘elementary’ doublets of subsection 3.1. Together, with 
the first ‘less elementary’ closed solution obtained in subsection 4.3, all the first eight 
constructions remain fully non-numerical. The other possible (and, presumably, numerical) 
triplet solutions are also sampled here as OUI ninth solution in subsection 4.3. 
Our construction demonstrates the usefulness of the generalization (3) of Morse forces. 

The complexity of its multiplets is not prohibitive-up to a single exception, all our 
closed triplet solutions (see later) were purely non-numerical. The elementary character 
of these triplets resulted from the (unexpected) numerous simplifications encountered in the 

Our results were obtained by the extensive use of computer algebra. 
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underlying algebra. An analysis of the deeper reasons for this (as well as of some further 
open questions, e.g. the conjectured absence of the 'neighbouring' doublets etc) seems to 
be of less immediate physical appeal and interest. It might deserve a more mathematically 
oriented study in the future. 

2. Elementary bound states 

2. I. The Liouvillean change of variables 

Let us first re-scale the coordinate r + pr in such a way that p = 2 in  our one-dimensional 
potentials. The change of variables 

r -+ R = R ( r )  = exp(-r) E (0, ea) +(r) + $ ( R )  = R"**(r) (4) 

may then be performed in accordance with Liouville [ 151. This transforms equation ( I )  into 
another equivalent radial Schrodinger equation 

with the formal Lth wave potential 

We see that our generalized Morse model must share at least some of the distinctive features 
of the QES sextic oscillators. Even the ordinary Morse potential (with B = C = 0) may be 
understood as being equivalent to the exactly and completely solvable harmonic oscillator 
itself in this language. 

In the 'quasi-realistic' s-wave problem (the approximative half-axis domain is not 
studied in any detail in what follows), our new 'Liouvillean' system and forces (6) become 
confined to a box with infinitely high walls at a finite radius R E (0, 1). Under certain 
circumstances, this might have high numerical merit [161. Here, we intend to proceed 
purely non-numerically. 

One of the most attractive properties of sextic oscillators (6) lies in their QES property. 
The corresponding multiplets of the exact solutions of equations (5) and (6) (with an 
elementary harmonic-oscillator-like structure of wavefunctions) were originally derived, 
without any use of Lie algebras, in a detailed paper by Singh eta1 [13]. This publication was 
preceded by a virtually unnoticed discovery of this possibility by Hautot [ 171, approximately 
ten years earlier. Both these studies, not often cited, have inspired a boom of similar 
constructions during the last fifteen years (cf, for example, their short review [9]  as well as 
a randomly chosen sample [18] of their recurrent rediscoveries). 

In contrast to the QES sextic example, the Liouvillean change of variables will assign 
each element of Singh's multiplet of wavefunctions to a different generalized Morse potential 
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(3). The explanation is easy. Transformation (4) replaces the original energy E by a new 
parameter of an 'angular momentum' 

(7) L = - ? + J A +  1 B + C  - E > -1 2 '  

Thus, we may write 

E = A + B + C - Z 2  Z = L + ! j > O .  

Alternatively, the 'new energy' E can be abbreviated to 

E = 2 A  exp(2re) + 3B exp(2rp) + 4Cexp(2ry) (9) 
and remains fixed by potential (3). As a consequence, a straightforward translation of 
Singh's construction generates a set of the so-called Stunnians [I41 rather than a multiplet 
of bound states belonging to the same potential. 

The feasibility of constructing a genuine multiplet of elementary bound states (so useful, 
for example, in perturbation theory [ 191) remains an open question in the present generalized 
Morse setting. This inspired our paper which pays attention to the difficult problem of 
multiplets. 

2.2. The algebraic Qm conditions 

Morse [I]  derives his potential via an elementary special-function ansatz. Here, a more 
general result will be achieved via a polynomial ansatz 

Without any further specification of its coefficients and with an arbitary integer N < 03 
and a WKB-compatible exponent 

G(R) = $hR4 + iCRZ A = A e x p ( 4 r y )  > 0 = g4/(2k) (11) 

our normalizable (i.e. physical and correct) bound-state ansatz transforms differential 
equation (l), with a generalized Morse potential, into its algebraic realization 

Bnhn+i = C,?hn + C;"h,-i 

B, =4(n  + I)(n + Z +  1) 

~ ; ' ) = 2 ~ ( 2 n + ~ ) - t ' + g z  ~ = o . I ,  ... 

Z =  L + 1 

cy = 2 f ( k  + z f 1) - E  

h o f O  ' hN#O hN+1=hN+2=. . .=0 .  

At an arbitrary energy (either the 'new' E or 'old' E) ,  the latter form of Schrijdinger's 
equation happens to be exactly solvable 
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The existence of our closed bound-state solutions proves formally equivalent to the validity 
of the only two remaining termination or ‘self-consistency’ conditions 

C R l ( =  2h(2N + Z + 2 )  - t2 + 82) = 0 (14) 

(Cf hN+1 = hN+2 = 0 and hN # 0) and 

det HIN1 = 0 (15) 

(the requirement hN+, = 0 in the language of determinantal equation (13)). 
After a short inspection of the former constraint (14), we notice that whenever we fix all 

the couplings in OUT generalized Morse potential (3), the only possible source of variation 
in the ‘new angular momentum’ parameters L or Z is the dimension N itself 

Z = Z ( N )  = (g4)2 / (2h)3  - g z / ( 2 h )  - 2 N  - 2 > 0 (16) 

In ascending order, all the ‘solvable’ energy levels (if any) become numerated by this N in 
accordance with equation (8) 

N = 0,1 , .  . . . 

EY*le ’  - - -4N2 + 4 N z  + A +  B i C - z2  

N = 0, 1. . . . , N,, N,, = - entier[-z/2] (17) 

z(- Z ( 0 ) )  = (g4)’/(2h)’ - g2/(2h)  - 2. 

Ece versa, at a fixed N ,  equation (16) enables us to eliminate, say, gz as a function of 
z = Z ( 0 ) .  This reduces the whole set of five free constants in Schradinger equation (5)  to 
a mere quadruplet. 

A re-scaling of the R’s  enables us to assign any numerical value to r y ,  86 or h. This 
means that on the r-line, the r + -r asymmetry of OUT forces V ( r )  leaves the position of the 
origin virtually undetermined. After we take h = for definiteness, we are left with three 
independent free parameters, say x (= E ) ,  y (= -2g4 2 N  > 0). 

The proof of the existence of at least one elementary bound-state energy level now 
has to be based on an analysis of our last constraint (15). One of the available three free 
parameters must be eliminated by this constraint. With relation (14) taken into account, the 
constraint reads 

(18) 

-g4/h)  and z (= Z ( 0 )  

det Q f N 1 ( x ,  y ,  z )  = 0. 

Here, Q I N ] ( x ,  y .  z) denotes the ( N  + 1)-dimensional tridiagonal matrix i“”-. 4 + 4 z  j (19) 
x + y ( Z  + 3 )  16 + 8 2  

... 
4 x + y ( Z +  2N - 1) 4 N 2 + 4 N Z  

2 x + y ( Z  + 2N + 1) 

i.e. matrix H f N ]  with 2 = Z ( N )  = z - 2 N  > 0. Mathematically speaking, we now only 
have to show that the roots of equation (18) are real. This is not difficult: due to the 
positivity of all the off-diagonal matrix elements in equation (19), the tridiagonal matrix 
QLN](x, y ,  z )  may easily be symmetrized. Then, algebraic equation (18) may be visualized 
as a diagonalization of a real and symmetric matrix. Up to a possible degeneracy [ZOl, this 
always gives an ( N  t I)-plet of ‘Sturmian’ real eigenvalues x or y .  
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3. The construction of doublets 

In the study of pairs of elementary bound-state solutions, a necessary condition for their 
existence 

det Q C N 1 ( x ,  y. z) = 0 N 2 0 

det Q'"I(x, y .  z) = 0 M > N 

has to be understood as a coupled pair of polynomial equations (18) in two variables, say, 
x and y. Their choice from a menu 

x + y ( z  + 1) = 0 N = 0 

x' + 2yzx + yZ(z2 - 1) + 8( 1 - z) = 0 N. M = 1 

x 3  + ~ ~ ' ( 3 2 .  - 3) + X [ Y ~ ( ~ Z ~  - 62 - 1) + 16(5 - 2 ~ ) ]  

+ Y(Z - 3)[yZ(z2 - 1) + 16(1 - ZZ)] = 0 N ,  M = 2 
(21) 

x 4  + yx3(4z - 8) + xz[y2(6z2 - 242 + 14) + 80(4 - z)] 

+ 4yx[y2(z3 - 6z2+ 72 + 2) - 8(5z2  - 302 + 34)l 

+ (Z - 5)[y4(z - 3)(Z2 - 1) - 16y2(5zZ - 152 + 4) + 576(~ - 3)] = 0 

N . M = 3  

is instructive in showing the mathematical difficulty of the problem: doublets will be defined 
as a solution of a coupled pair (20) of nonlinear algebraic equations (21). 

3.1. The simplest choice, N = 0 

At N = 0, the linear item in (21) leads to the unique and real root x = -y(z  + 1). The 
positivity of Z(M)  = z - 2M > 0 is to be demanded as equivalent to the correct r + 00 

asymptotics (and finite norm) of the wavefunctions. A priori, the simplest doublets of 
elementary bound states might then result from an insertion of x (= ~ ( 0 ) )  in the rest of our 
menu. We get a new sequence of restrictions 

8(1 - z )  = 0 M = 1 z > 2  

64y(z -2) = O  M = 2  z > 4 

576(3 - z)[$ - (Z - 5)] 0 M = 3 z > 6 

2M8y(z - 4)[3y2 - 2 ( 4 ~  - 25)] = 0 

12800(5 - e)[6r4 + ~'(217 - 292) + 9(z - 9 ) ( ~  - 7)1 = 0 

221 184y(z - 6)[5y4 + ~'(322 - 372) + 4(8z2 - 1482 + 675)]= 0 

M = 4 z > 8 

M = 5 z > 10 

M = 6  z > 1 2  

.. 

imposed upon y and z. 
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The simplest choice of degrees ( N , M )  = (0.1) implies that Z ( M )  = -1 remains 
negative and, hence, unacceptable. The related M = 1 wavefunction (10) does not behave 
properly at R = 0, i.e. at r > 1. The choice of larger M’s is more rewarding and leads to 
the following abundance of real and acceptable roots y = ym(M. z): 

Yl(2, z) = 0 

y1.2(3, Z) = *- 
3Yi,z(4, Z) = &- 

6y1.2.3,4(5.z) =f 87z-651f3~625z2-9130z+33481 

Yl.2.3.4(6. z) = &4&J729z2 - 11 9882 + 49 684 + 372 - 3 2 2 / f i  

(23) 

All these doublet roots stay real under the automatically satisfied conditions z > c(M) with 
c(3) = 5, c(4) = 6.25, 45 )  = 9, c(6) = 10.34, etc. 

3.2. The next case, N = 1 

At N = I ,  the quadratic polynomial (21) possesses a pair of real roots 

which define the two different potentials (3). Each of the roots remains real in a non- 
empty domain 8z + y2 > 8 (z > 1) which again incorporates all the physical z’s, 
Z ( M )  = z - 2M E (1 - 2M, CO). 

The elimination of ~ ( 1 )  generates the new hierarchy of equations 

8 ( 3 - z ) ( 3 J V - y )  = O  M = 2  

128(z - 4) ( 2 y J 7 T G i  - yz - 12) = 0 M = 3 (3) 

.... 

An unacceptable imaginary solution emerges at M = 2, but the next steps of the search 
with M > 3 are successful and yield the physical parameters y2 = y,?fM, z) as real roots 
of polynomials of degree M - 1: 

&y1,2(3, z) = *2J2J4z2 - 14z + 19 - 42 4- 7 

= & 2  2J4a2+34a+79-4a-17 a = z - 6 > 0  

... 
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4. The triplets of elementaw bound states 

Both equations (22) and (25) and their elementary-doublet solutions (23) and (26) depend 
on the last free parameter z.  We may try to fix its value by an additional constraint 

det Q”’(x. y ,  z) = 0 

det Q r M ’ ( x ,  y ,  z) = 0 

det Q’‘’(x, y .  z )  = 0 

N 2 0 

M > N 

K > M 

in combination with the appropriate boundary-condition formula 

Z ( K ) = z - 2 K z O .  (28) 

This would guarantee the existence of triplets of elementary bound-state wavefunctions (10) 
in the given generalized Morse potential (3). 

In the light of our preceding results, the absence of doublets implies the absence 
of triplets at any ( N .  M ,  K) = ( 0 , l .  K) and ( N .  M ,  K )  = (1,2,  K) (and, we feel 
tempted to conjecture, at any ( N ,  M, K) = ( N ,  N + 1, K)). We may also eliminate 
( N ,  M ,  2k + 1) = (0,2,2k + 1) with k = 1,2, . . . since all the related solutions read 
z = z i ( N , M , K )  = zi(0,2,2k + 1)  = 2k + 7.i + 1, i = 0,1, .,., k and contradict 
equation (28). Finally, in the case of ( N ,  M, K )  = ( 0 , 2 , 2 t )  with t = 2 , 3 , .  . ., with 
‘quasi-trivial’ solutions x = y = 0 and with arbitrary z’s, it is easy to demonstrate that 
all the related potentials (3) degenerate back to the ord inw Morse force after a re-scaling 
LL + p/2. Within our present formalism, the quasi-hivial equations (12) with disappearing 
hw+l’s degenerate to recurrences for q k  hZ’s: 

92 = -(4t - 4)q1/(64 + 162), . . . . 41 = -4tqo/(16 + 82) (29) 

These equations are solvable and their solution 

may easily be recognized as a definition of Laguerre polynomials. 
consistency of our approach becomes confirmed a posteriori. 

search for non-trivial hiplets of terminating bound states (10). 

4.1. A systernatic study of ( N ,  M ,  K) = (U, 3 ,  K )  

In the light of equation (28), all the common roots zo(N, 3, K )  = 3 and their K-dependent 
partners ZI (0,3, K )  = K + 3 may be ignored as unphysical. An inspection of equation (22) 
and an elimination of yz = 2-5 via its third row shows that K = 4 and K = 6 offer no other 
real roots, while K = 5 gives a just too small (= ‘unphysical’) root 12  = 23/7 w 3.29 << 10. 
The first success is only encountered at K = 7. Via a quadratic equation, and in addition 
to an unphysical 

In this way, the 

For the next few non-trivial ( N ,  M ,  K ) ’ s ,  let us now perform a (computer-assisted) 

w 3.66, we get our first physical solution 

z ‘ ~ ~ = z ~ ( 0 . 3 , 7 ) = ( 1 2 6 + ~ ) / 1 1 ~ 1 9 . 2 8 3 8 1 8 7 7  (> 14). (31) 
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Similarly, K = 8 gives the unphysical 22 % -4.72 and our second acceptable solution 

~ ‘ * ~ = z 3 ( 0 , 3 , 8 ) = ( 5 6 3 + 1 8 ~ ) , / 9 1 %  17.09107983(> 16). (32) 

In the same manner, the forthcoming sequence of equations 

812’ - 1694~ + 5325 = 0 

3 7 4 ~ ~  - 20441~’ + 2295552 + 245840 = 0 

1729~~-55730~~-470604~ ’+20580178z -71914325=0 K = 11 

K = 9 

K = 10 
(33) 

... 

has to be solved step-by-step. This leads to the unphysical K = 9 pair of roots 
z2,3 = (847 & 2 m ) / 8 1  % {17.06,3.85) followed by the three K = 10 solutions, 
etc. In the latter case, the unphysical pair 22.3 EI: 117.55, -0.98) is accompanied by our 
third physical root 

zf3} = ~ ~ ( 0 . 3 ,  10) = J160273771 sin[(@ + n)/31/561 + 20441/1122 

EI: 38.0864 > 20 

726279854616578 142691 575099403044347355 me = g J  2427 112467348350355585 (34) 

This is to be complemented by the four real roots 22.3.4.5 at K = 11. Besides the unphysicaI 
subset 22.3.4 % 1-19.354.02, 18.25}, our fourth well behaved solution is 

~ ‘ ~ ’ = ~ 5 ( 0 , 3 . 1 1 ) = ~ ~ ~ % 2 9 . 3 1 9 6 1 4 >  22. (35) 

In principle, this is still a non-numerical result [20], but study of the higher K’s already 
seems to require an alternative purely numerical approach to the corresponding polynomial 
equations (33). 

4.2. The c u e  of ( N ,  M ,  K )  = (0 .4 ,  K) 
The common root z o ( N ,  4, K) = 4, the less hivial and K-dependent integer zl(0,4, K) = 
K + 4  c 2K, the fractional and unique solutions of linear equations z~(0.4,5) = 461/77 
5.99, z2(0.4,6) = 115/28 - 4.11 and z2(0.4,8) = 1433/320 % 4.48 at K = 5 ,  6 and 
K = 8 as well as, finally, the two K = 7 roots zz,,(O. 4,7) = (197 zk 6 m ) / 2 2 1  EI: 
(5.88,4.10) of the underlying quadratic equation may be ignored. All of them violate 
normalizability condition (28). Only the subsequent M = 4 counterparts of equation (33). 
namely 

33 6492’ - 1 432 8872’ + 8 6074832 - 7 813 045 = 0 

1 6 0 1 6 ~ ~  - 3997682’ - 1531 5152 + 14532070 = 0 

96 135z4+45620z3 - 87827630~~ +6969313002 - 1172415 169 = 0 

K = 9 

K = 10 
(36) 

K = 11 
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become productive. At K = 9 they give the (still non-numerical) unphysical solutions 
z2(0,4,9) ~3 5.90, z3(O, 4,9) * 1.1 1 plus our fifth satisfactory root 

= z2(o,4,9) 
= Sd8224066447sin[@+rr)/31/33649+477629/33649 %z 35.57662 
16431691081 236520032956144866990550350030008502 

(37) 

-7.03 and z3(O, 4, 10) %z 4.74 is complemented 
260640269959315432063878 

tan4 = 5J 

Similarly, the unphysical pair ~ ~ ( 0 . 4 ,  10) 
by the physical 

z161 = 24(01 4, 10) 

tan$ =26217d 

= d1620838 101sin[($ + n)/31/2002+ 16657/2002 m27.24785 

(38) 
1744721 478 818 204 141 179 114862880068 355 

58 154543543305571091730 
The list of non-numerical possibilities seems completed by a biquadratic equation (36) 
at K = 11. The unacceptable triplet of its too small roots z2(O14,1l)  = -33.97, 
z3(O,4, 11) % 2.41, 24(0,4,11) m 5.93 is accompanied by our last N = 0 acceptable 
solution 

2"' = ~5(0,4,  11) , r r  C25.153897 > 22.. ,. (39) 
Again, the latter root is non-numerical 1201 but its explicit non-numerical form proves 
impractical for virtually any purpose. 

4.3. The more complicated series (NI M ,  K) = ( I ,  3 ,  K) 
At N = 1, we have to expand the even powers of the square root U = 
J64(4Z2 - 142 + 19)/9 in terms of 2's. This is a clumsy but straightforward procedure-we 
obtain equations which are linear in U and of the (K - 1)th order in the second variable z: 
7 0 7 5 ~ ~  - 15z2(80~ + 5739) + 15~(796V -k 19651) - 24780~ - 271 915 = 0 K = 4 

.... (40) 
The elimination of U and its squaring leads to another series of equations 

1 3 4 7 5 ~ ~ -  1960M)~~+725114~~-659040~-272925=0 K = 4  

5602' - 835 12' + 33 0962 - 33 260 = 0 K = 5 (41) 

.... 
Their K-dependence ceases to be trivial-we obtain a polynomial of the eighth degree 
at K = 6, etc. We may omit the redundant details now. In addition to the unphysical 
zz(l,3,4) = -0.304, 23(l, 3,4) = 15/7 C 2.14 and z4(1.3,4) zt: 3.31, we get our final 
non-numerical physical K = 4 solution 

~ ' " = ~ 2 ( 1 , 3 . 4 ) = . . . ~ 9 . 3 9 7 4 6 8 8 > 8  . (42) 
Indeed, the next equation produces just unacceptable roots zz(l,3,5) = 9.18, z3(l ,  3,5) = 
4.19, z4(1,3,5) = 1.54 while, as already mentioned, the subsequent K = 6 item in 
equation (41) would already require a purely numerical treatment. 

Finally, it should be noted that the specialized numerical algorithms proved to be 
extremely efficient in practice. Their careful use even enabled us to prove the existence of 
the physical solutions of the type 

(43) 
i.e. roots and bound states without a consequently non-numerical character. 

21'' = ~2(1,3,6) =. , . 15.078 82 > 12 
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